Dataflow Gen2 Best Practices | CONFIDENTIAL

DATAFLOW GEN2
BEST PRACTICES

Power Query • Transformations • Data Destinations • Performance

Version 1.0 | January 2026

Table of Contents

1. Dataflow Gen2 Overview
Dataflow Gen2 in Microsoft Fabric provides a low-code, visual interface for data transformation using Power Query. It bridges the gap between self-service data preparation and enterprise data engineering.
1.1 Key Features
1. Visual transformation editor with 300+ built-in transformations
1. Direct integration with Fabric Lakehouse, Warehouse, and other destinations
1. Scalable execution on Fabric compute
1. Incremental refresh for efficient processing
1. Reusable queries across dataflows
1. Git integration for version control
1.2 Dataflow Gen2 vs Gen1
	Capability
	Gen1
	Gen2

	Destinations
	Limited to dataset
	Lakehouse, Warehouse, KQL, more

	Compute
	Power BI service
	Fabric compute (scalable)

	Staging
	Manual Lakehouse
	Built-in staging

	Fast Copy
	No
	Yes (optimized Copy)

	Incremental Refresh
	Limited
	Full support

1.3 When to Use Dataflow Gen2
1. Simple to medium complexity transformations
1. Data cleansing and standardization
1. Self-service data preparation by analysts
1. API/web data integration
1. File parsing and transformation
1. Prototyping transformations before Spark implementation
1.4 When to Use Notebooks Instead
1. Complex business logic requiring code
1. Large-scale data processing (>100GB)
1. Machine learning workloads
1. Custom library requirements
1. Advanced debugging needs

2. Query Design
Design dataflow queries for maintainability, performance, and reusability.
2.1 Query Structure
Recommended Pattern
// Source Query
Source_Claims = Sql.Database(server, db, [Query=query])

// Staging Query (intermediate)
Staged_Claims = Source_Claims
 |> Table.SelectColumns(["col1", "col2", "col3"])
 |> Table.SelectRows(filter_condition)

// Transformation Query
Transformed_Claims = Staged_Claims
 |> Table.AddColumn(...)
 |> Table.TransformColumns(...)

// Output Query (load enabled)
Output_Claims = Transformed_Claims
2.2 Query Folding
Query folding pushes transformations to the data source for optimal performance.
Transformations that Fold
1. Table.SelectColumns (column selection)
1. Table.SelectRows (filtering)
1. Table.Sort (ordering)
1. Table.Group (aggregation)
1. Table.Join (when both sides fold)
Transformations that Break Folding
1. Table.AddColumn with custom functions
1. Table.Buffer
1. Complex M expressions
1. Merging with non-foldable sources
Checking Query Folding
Right-click a step and check if 'View Native Query' is available. If yes, folding is active.
2.3 Query References
Use query references to avoid duplicate processing:
// Base query processed once
Base_Data = Source |> Transform1 |> Transform2

// Reference queries share processing
Output_A = Base_Data |> Additional_Transform_A
Output_B = Base_Data |> Additional_Transform_B

3. Common Transformations
3.1 Column Operations
Select Columns
= Table.SelectColumns(Source, {"col1", "col2", "col3"})

// Remove columns
= Table.RemoveColumns(Source, {"unwanted_col"})
Rename Columns
= Table.RenameColumns(Source, {
 {"OldName1", "new_name_1"},
 {"OldName2", "new_name_2"}
})
Change Type
= Table.TransformColumnTypes(Source, {
 {"date_col", type date},
 {"amount_col", type number},
 {"id_col", Int64.Type}
})
3.2 Row Operations
Filter Rows
= Table.SelectRows(Source, each [Status] = "Active")

// Multiple conditions
= Table.SelectRows(Source, each
 [Status] = "Active" and [Amount] > 0)

// Date filter
= Table.SelectRows(Source, each [Date] >= #date(2024, 1, 1))
Remove Duplicates
// Remove duplicates based on columns
= Table.Distinct(Source, {"business_key"})
Sort Rows
= Table.Sort(Source, {{"Date", Order.Descending}})

// Multiple columns
= Table.Sort(Source, {{"Category", Order.Ascending}, {"Date", Order.Descending}})
3.3 Add Columns
// Conditional column
= Table.AddColumn(Source, "Status_Group", each
 if [Status] = "A" then "Active"
 else if [Status] = "I" then "Inactive"
 else "Unknown")

// Calculated column
= Table.AddColumn(Source, "Total", each [Qty] * [Price])

// Date column
= Table.AddColumn(Source, "ProcessDate", each Date.From(DateTime.LocalNow()))

4. Data Destinations
Dataflow Gen2 supports multiple output destinations for transformed data.
4.1 Destination Types
	Destination
	Best For
	Update Method

	Lakehouse Table
	Delta tables for analytics
	Append, Replace

	Warehouse Table
	SQL-queryable data
	Append, Replace

	KQL Database
	Time-series analytics
	Append

	Azure SQL
	Operational systems
	Append, Replace

4.2 Configuring Lakehouse Destination
1. Select output query in Power Query editor
1. Click 'Add data destination' > Lakehouse
1. Choose workspace and Lakehouse
1. Select new or existing table
1. Configure update method (Append/Replace)
1. Map columns to destination schema
4.3 Update Methods
Replace
Drops existing data and loads new data. Best for full refresh scenarios.
Append
Adds new rows to existing data. Best for incremental loads.
4.4 Staging
Enable staging for better performance with large datasets:
1. Staging writes data to Lakehouse before destination
1. Enables parallel processing of transformations
1. Required for some destinations
1. Configure in dataflow settings
Note: Enable staging when processing more than 1 million rows for optimal performance.

5. Incremental Refresh
Incremental refresh processes only new or changed data, reducing processing time and resource consumption.
5.1 Setting Up Incremental Refresh
1. Create parameters for date range filtering
1. Filter source data using parameters
1. Configure incremental refresh in destination settings
1. Define range and granularity
5.2 Required Parameters
// Create these parameters in Power Query
RangeStart: DateTime
RangeEnd: DateTime

// Use in filter
= Table.SelectRows(Source, each
 [ModifiedDate] >= RangeStart and
 [ModifiedDate] < RangeEnd)
5.3 Incremental Settings
	Setting
	Description

	Incremental Range
	Time period to refresh (e.g., last 7 days)

	Archive Range
	Historical data to keep (e.g., 2 years)

	Detect Changes
	Column to detect row changes

5.4 Best Practices
1. Use indexed columns for date filters
1. Ensure source data has reliable modified timestamp
1. Start with small incremental window, expand as needed
1. Monitor partition sizes for balance

6. Performance Optimization
6.1 Query Optimization
1. Push filters to source (maintain query folding)
1. Select only required columns early
1. Avoid Table.Buffer unless necessary
1. Use native queries for complex source filtering
1. Minimize query dependencies to enable parallelism
6.2 Source Optimization
1. Use incremental refresh to limit data volume
1. Add indexes on source filter columns
1. Use views or stored procedures for complex logic
1. Limit API page sizes appropriately
6.3 Staging Best Practices
1. Enable staging for datasets > 1 million rows
1. Use dedicated staging Lakehouse for multiple dataflows
1. Configure appropriate staging timeout
1. Monitor staging storage usage
6.4 Performance Anti-Patterns
1. Loading entire tables without filters
1. Multiple sequential transformations that break folding
1. Buffering large datasets unnecessarily
1. Complex M code in frequently executed steps
1. Ignoring query folding indicators

7. Best Practices Summary
7.1 Design Principles
1. Keep queries modular and well-documented
1. Maintain query folding where possible
1. Use staging for large datasets
1. Implement incremental refresh for efficiency
1. Version control with Git integration
7.2 Naming Conventions
	Element
	Convention
	Example

	Dataflow
	df_[layer]_[domain]
	df_bronze_claims

	Source Query
	src_[source_name]
	src_sql_claims

	Transform Query
	tfm_[description]
	tfm_clean_claims

	Output Query
	out_[destination]
	out_lakehouse_claims

7.3 Error Handling
1. Use try-otherwise for error-prone transformations
1. Add data quality checks as validation queries
1. Log row counts at key stages
1. Configure alerts on dataflow failures
7.4 Documentation
1. Add descriptions to all queries
1. Document parameters and their purposes
1. Include source system details
1. Note any business rules applied

Appendix: Document Information
	Document Title
	Dataflow Gen2 Best Practices

	Version
	1.0

	Last Updated
	January 2026

Page of
